# Exponent Product Rules

Defination Exponent Product Rules: One of a set of rules in algebra: exponents of numbers are added when the numbers are multiplied, subtracted when the numbers are divided, and multiplied when raised by still another exponent: am×aⁿ=am+n; am÷aⁿ=amn; (am)ⁿ=amn

## Exponent product rules

an ⋅ am = an+m

### Example:

23 ⋅ 24 = 23+4 = 27 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128

an ⋅ bn = ( b)n

### Example:

32 ⋅ 42 = (3⋅4)2 = 122 = 12⋅12 = 144

an / am = anm

### Example:

25 / 23 = 25-3 = 22 = 2⋅2 = 4

an / bn = (/ b)n

### Example:

43 / 23 = (4/2)3 = 23 = 2⋅2⋅2 = 8

(an) m = a n⋅m

### Example:

(23)2 = 23⋅2 = 26 = 2⋅2⋅2⋅2⋅2⋅2 = 64

a nm a (nm)

### Example:

232 = 2(32= 2(3⋅3) = 29 = 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2 = 512

m√(a n) = a n/m

### Example:

2√(26) = 26/2 = 23 = 2⋅2⋅2 = 8

b-n = 1 / bn

### Example:

2-3 = 1/23 = 1/(2⋅2⋅2) = 1/8 = 0.125

Rule name Rule Example
Product rules a na m = a n+m 23 ⋅ 24 = 23+4 = 128
a nb n = (a b) n 32 ⋅ 42 = (3⋅4)2 = 144
Quotient rules a n / a m = a nm 25 / 23 = 25-3 = 4
a n / b n = (a / b) n 43 / 23 = (4/2)3 = 8
Power rules (bn)m = bn⋅m (23)2 = 23⋅2 = 64
bnm = b(nm) 232 = 2(32)= 512
m√(bn) = b n/m 2√(26) = 26/2 = 8
b1/n = nb 81/3 = 38 = 2
Negative exponents b-n = 1 / bn 2-3 = 1/23 = 0.125
Zero rules b0 = 1 50 = 1
0n = 0 , for n>0 05 = 0
One rules b1 = b 51 = 5
1n = 1 15 = 1
Minus one rule (-1)5 = -1
Derivative rule (xn) = nx n-1 (x3) = 3⋅x3-1
Integral rule xndx = xn+1/(n+1)+C x2dx = x2+1/(2+1)+C